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LETTER TO THE EDITOR 

Curie temperature of the square Ising ferromagnet with 
first-, second- and third-neighbour interactions 

Per Arne Slotte 
Institutt for teoretisk fysikk, Universitetet i Trondheim, N-7034 Trondheim-NTH, Norway 

Received 7 June 1982 

Abstract. The transition temperature for the square-lattice king ferromagnet with first-, 
second- and third-neighbour interactions is calculated by the interface method. The results 
are apparently fairly accurate, except when the third-neighbour coupling is completely 
dominating. We check, in particular, a series result for the equivalent-neighbour model 
to within a few per cent. 

The interface method (Muller-Hartmann and Zittarz 1977) yields the exact Curie 
temperature of many two-dimensional Ising ferromagnets with only nearest-neighbour 
interactions present (Southern 1978). Among these are the square, triangular and 
hexagonal lattices. One might ask if this method is a good approximation even when 
more distant-neighbour interactions are taken into account. Burkhardt (1977) has 
included the next-nearest-neighbour ferromagnetic interaction on the square lattice, 
and in this case, the interface method yields an accurate estimate for the Curie 
temperature. In the limiting cases of only nearest-neighbour and only next-nearest- 
neighbour interactions the exact Curie temperatures are reproduced, and with both 
couplings present the interface result probably deviates from the exact temperature 
by no more than 5%.  The most obvious extension of this model is an inclusion of 
third-neighbour interactions, i.e. a system with the Hamiltonian 

on the square lattice. The sums run over first-, second- and third-neighbour pairs, 
respectively, and the interactions are assumed ferromagnetic (Jn > 0). 

The Curie temperature of this model has not, to my knowledge, been calculated 
with good precision except in the special case of equivalent neighbours (i.e. J1= J2 = 
J3 = J). Domb and Dalton (1966) have used series expansion methods to calculate 
the Curie temperature, T,, for the equivalent-neighbour model, with the result 

J/RTc=0.1135. (2) 

If the interface method is capable of giving a transition temperature in good agreement 
with this result it would be a strong indication that the interface results are accurate 
approximations even when third-neighbour interactions are taken into account. My 
calculation is based on a straightforward generalisation of the method developed by 
Burkhardt in his article. Summing the partition function over interface configurations 
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on a diagonal interface (see figure l), the interface free energy per spin along the 
interface, fi, is given by 

(3) exp(-Pfi ) = A m 

where A, is the maximum eigenvalue of the transfer matrix 

Tay = exp[-2Kz-K1(12a + 11 + 12y + 11)- (2Kz+4K3)lar + y + lI-4K3S--a,y+l] 

K ,  = JJkT,  with k the Boltzmann constant and S the Kronecker delta. 
(4) 
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Figure 1. Example of non-overhanging diagonal interface configuration used in the 
calculation of interface free energy. + and - designate spins of different orientation. JI, 
J2 and J3 are the three different couplings. 

At the critical point the interface free energy vanishes which means that the Curie 

In the limits Jzy J3 + 0 and J1, J3 + 0, respectively, Burkhardt showed that this gives 
temperature is determined by A, = 1. 

the exact Curie temperature (Onsager 1944) 

k T i  = 2Jl/[ln(l +&)I ( 5 )  

and 

kTz = 2Jz/[ln(l +&)I. 
In the special case of no nearest-neighbour interactions, J1 = 0, the maximum 

eigenvalue of T can be evaluated analytically. In this case the relevant eigenvector 
is x ,  = constant. The corresponding eigenvalue is 

) (7) 
2 exp(-2Kz -4K3) 
1 - exp(-2Kz - 4K3) 

m 

y=-00 

giving the critical condition 

e x p ( 2 ~ ~ )  = e x p ( - 4 ~ ~ j  + Jii e x p ( - 2 ~ ~ )  
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when J2 also vanishes, (8) yields the Curie temperature 

kT2 = 4J3/[ln(2 +4/3)] (9) 

while the exact result is again the Onsager formula (3, about $ of (9). 
I have not been able to evaluate A, for arbitrary KI, K2 and K3, but like Burkhardt, 

I have derived a recurrence relation for the eigenvector x.  This can be used for 
numerical calculation of the Curie temperature for arbitrary interaction strengths. 
Since Tay = T-(a+l),-(y+l) the relevant eigenvector has the symmetry xa = x - ( ~ + I ) ,  and 
the eigenvalue equation can be written 

where a! and y are non-negative integers. Combining (10) and (4) gives the recurrence 
relation 

FOX, +Flxa+l + F z x ~ + z  = 0 (11) 
with 

FO = 2 exp[ -2K2 - 2K3 - (6 + 4a )K1] sinh 2K3 + A, exp( -4K1) (12) 

- 2A, exp(-2K1) cosh(2K2 + 4K3) (13) 

F2=2 exp[-2K2-2K3-(10+4a)K1]sinh2K3+A, (14) 

FI = 2 exp[-2K2-4K3- (8+4a)K1][cosh(2K2+4K3)-exp(-2K2)] 

and the boundary conditions 

1 + exp(2K2 + 4K3) 
1 + 2A i1 exp(-2K1- 2K2 - 2K3) sinh 2K3 

xo = 

2 exp(-2K1 +K2 + 2K3) cosh(3K2 + 6K3) 
- 2x0A i1 exp(-4K1- 2K2) sinh(2K2 + 4K3) 

(16) 

x 1 =  
1 + 2A i1 exp(-6K1- 2K2 - 2K3) sinh 2K3 

when x is normalised according to the following normalising condition 
m 

A,=exp(-2K1-4K2-4K3) exp[-(2K1+2K2+4K3)ylx,. (17) 
Y==O 

The Curie temperature is found by viewing the normalising condition (17), with the 
vector x given by (11)-(16), as an equation for the unknown critical temperature 
when A, is put equal to its critical value, A, = 1. This equation is solved numerically. 

I have also calculated an expression for the critical condition in the case of weak 
nearest-neighbour interactions, i.e. an expression valid to the lowest order in K1. 
There are two reasons for doing so. First, it is of interest to know how the critical 
surface approaches the K1= 0 plane. As will be shown, this plane is a tangent plane 
of the critical surface. Second, the numerical approach given above is not very useful 
when Kls0.005. The difference between the right-hand side of (17) and 1 is less 
than lo-'' over large intervals of K2 and K3 when K1 s 0.005. This is probably related 
to the fact that the right-hand side of (17) equals 1 identically when K1 = 0. 
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In this calculation I found it convenient to introduce the vector 4a = exp(-2Kla)xa. 
The elements of this vector are related through a recurrence relation similar to (11). 
Since the vector x = constant is the relevant eigenvector when K1 = 0, 4, is a slowly 
varying function of a when K1 is small. In this limit the recurrence relation can 
therefore be transformed into a differential equation for 4 (a) = (ba. Scaling the variable 
y = K i’3a this differential equation can be written 

with 

and 

where th 

8 
1 + JZ e x p ( - 2 ~ ~ )  

C =  

coefficients have been expanded in the small quantities K1 a d ( K ;  -K2), 
and higher-order components, giving higher-order contributions to the critical condi- 
tion, are ignored. KS is the critical value of K2 when K1 = 0, and is given as a function 

The Schrdinger-like differential operator in (18) has a set of pure numbers, E,, 
as its eigenvalues. Since the eigenvector associated with the maximum eigenvalue of 
the matrix T (equation (4)) is positive and symmetric around -f, we have the boundary 
conditions 4’(0) = 0 and q5 (a) > 0. This gives an unambiguous determination of the 
eigenvalue Eo = E .  The solution of (18) (Morse and Feshbach 1953) gives the critical 
condition 

of K3 by (8). 

K1 = 2.75038(1+ Ji exp(-2K3))-’”(K‘2 -K2)3’2. (21) 

Thus the critical condition, when K1 is small, is of the form 

K1= constant(K; -K2IY (22) 

where the exponent, y, is independent of KJ. We know that the exact exponent is 
y = f  when K 3 = 0  (van Leeuwen 1975). My conjecture is therefore that the exact 
critical condition is of the form (22) with the K3-independent exponent y = f .  

The critical surface is shown in figure 2. I have used the numerical procedure 
based on (10)-(16) to evaluate it when K1 30.005, and (21) when K1 4 0.005. The 
two parts of the surface join smoothly, there is nowhere more than 2% difference in 
the two K1 values along the splicing line. 

For the Curie temperature of the equivalent-neighbour model I find 

J / k  T,  = 0.1 162. (23) 

This can be compared with the series expansions value (Domb and Dalton 1966) 
J/kT, = 0.1135 (equation (2)). The two approximations are clearly in good agreement 
(within 2.5%). Notice that the interface Curie temperature is slightly lower than the 
series expansion result, as in the case when K 3 = 0  (Burkhardt 1977). Since the 
interface method yields a higher Curie temperature than the exact value when the 
third-neighbour interaction is totally dominant (J1/53 = 0 and J2/J3 J 0, see equation 
(9)), this implies that this method is a good approximation even for higher values of 
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Pigpre 2. Critical surface. The lines are critical lines for different &/kT values, starting 
from JJkT = 0 (outer line) with distance A(J3/kT)  = & ln(2+J3) = &j&. K; is the 
critical value of J3/kT when J ,  = J2 = 0. 

the ratio J3/(J1+Jz)  than 4. The conclusion is that the interface method is a good 
approximation method for determining the Curie temperature of square-lattice Ising 
ferromagnets, not only with only first- and second-neighbour interactions present, but 
also when third-neighbour interactions are included. The resulting Curie temperature 
agrees with the exact value to within a few per cent when third-neighbour interaction 
is not dominant (J3 < J I  +Jz). The method only fails seriously when the third-neighbour 
interaction is totally dominant. 

References 

Burkhardt T W 1977 Z.  Phys. B 29 129 
Domb C and Dalton N W 1966 Roc.  Phys. Soc. 89 859 
van Leeuwen J M J 1975 Phys. Rev. Len. 34 1056 
Morse P M and Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill) p 1651 
Muller-Hartmann E and Zittarz J 1977 Z.  Phys. B 27 261 
Onsager L 1944 Phys. Rev. 65 117 
Southern B W 1978 Z. Phys. B 30 61 


